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Abstract: This study develops and evaluates a hybrid forecasting framework for energy market 
dynamics that combines classical econometrics with complex network science. Using daily West 
Texas Intermediate (WTI) spot prices from May 23, 1990 to October 30, 2025, we target short-
horizon risk by forecasting 7-day forward returns, standardized via a rolling 50-day mean and 
volatility to mitigate heteroskedasticity. The univariate price series is mapped into Natural Visibility 
Graphs (NVGs) on rolling windows (𝐿 = 25, 50, 75, 100 days), and a vector of topological descriptors 
is extracted at each step, including spectral measures (e.g., algebraic connectivity, spectral gap, 
natural connectivity, graph energy) and centrality/efficiency and clustering indicators (e.g., global 
efficiency, harmonic centrality, betweenness, maximum degree, clustering, assortativity). These 
metrics serve as exogenous regressors in an ARIMAX model, enabling the forecasting engine to 
incorporate structural information embedded in the geometry of price history. Empirical results show 
that NVG topology exhibits regime-dependent signatures: crisis episodes are associated with sharp 
shifts in centralization and connectivity, and several network indicators become statistically 
significant predictors of standardized 7-day returns. In particular, global efficiency and harmonic 
centrality repeatedly emerge as dominant covariates, with coefficient signs varying across window 
lengths, consistent with multi-timescale market behavior. The sample is split into a pre-2020 training 
set and a post-2020 testing set to stress-test robustness under extreme events. The findings highlight 
heterogeneous horizons in oil price dynamics and the value of NVG features for practical forecasting 
and monitoring. 
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Introduction 
 

The global energy landscape, dominated by the vicissitudes of the crude oil market, stands as 
one of the most complex and consequential economic systems in the modern world. Crude oil is not 
merely a fungible commodity; it is the lifeblood of industrial civilization, a geopolitical weapon, and 
a primary input variable for macroeconomic stability. The dynamics of crude oil prices – historically 
characterized by extreme volatility, non-linear regime shifts, and susceptibility to exogenous shocks 
– present a formidable challenge to economists, policymakers, and financial analysts (Hamilton, 
2009; Kilian, 2009). Accurate forecasting of these price movements is paramount, not only for the 
profitability of trading desks but for the formulation of fiscal policies in producing nations and 
inflation management in consuming economies. 

However, the traditional econometric toolkit, heavily reliant on linear paradigms such as the 
Autoregressive Integrated Moving Average (ARIMA) model, faces diminishing returns in an era 
defined by hyper-connectivity and structural chaos (Box et al., 2015; Hyndman & Athanasopoulos, 
2021). While these models provide a robust baseline for capturing linear autocorrelations, they 
frequently fail to account for the “black swan” events and complex internal dynamics that define 
turbulent market regimes (Taleb, 2007). This research report proposes and evaluates a novel 
methodological framework: the augmentation of classical ARIMA approaches with advanced 
topological indicators derived from complex network theory. By transforming time series data into 
Natural Visibility Graphs (NVGs), we hypothesize that the geometric and topological structure of 
price history contains latent predictive information that can significantly enhance forecasting 
accuracy during periods of market stress (Lacasa et al., 2008). This hypothesis is consistent with 
prior early-warning research demonstrating that entropy-based complexity measures can reveal 
precursors to crash-like events in financial markets (Bielinskyi et al., 2026). 

The contemporary energy market operates under the pressure of a “trilemma”: the competing 
demands of security, affordability, and sustainability (World Energy Council, 2022). This structural 
tension exacerbates volatility. Historically, oil prices have been driven by a relatively straightforward 
calculus of OPEC supply quotas and OECD demand. Today, however, the market is influenced by a 
chaotic confluence of factors: the rapid elasticity of US shale production, the unpredictable demand 
shocks of post-pandemic recovery, the geopolitical fracturing of global supply chains (exemplified 
by the Russia-Ukraine conflict), and the long-term uncertainty introduced by the green energy 
transition (International Energy Agency, 2023; Smith, 2017). 

The West Texas Intermediate (WTI) crude oil price, the primary focus of this study, serves as 
a barometer for these tensions. A cursory examination of WTI price history from 1990 to 2025 reveals 
a trajectory that defies simple linear extrapolation. The Gulf War spikes of the early 1990s, the 
demand-driven supercycle of the mid-2000s, the financial collapse of 2008, the supply glut of 2014, 
and the unprecedented negative prices of April 2020 all represent distinct “regimes” or phases of the 
market (U.S. Energy Information Administration, 2020). Standard time series models often assume 
stationarity or stable variance (homoscedasticity) after differencing, an assumption that crumbles in 
the face of such multifractal behavior (Álvarez-Ramírez et al., 2002). Such multifractal features and 
cross-market dependencies have been documented in related financial contexts, highlighting that 
market dynamics often reflect coupled, non-linear structures rather than isolated processes (Bielinskyi 
et al., 2023a). 

The limitations of linear modeling in this context are well-documented. ARIMA models, while 
mathematically elegant, essentially view the future as a linear combination of the past (Box et al., 
2015; Hyndman & Athanasopoulos, 2021). They are “blind” to the structural texture of the data. For 
instance, an ARIMA model might perceive a stable uptrend and a volatile pre-crash bubble as 
statistically similar if their immediate autocorrelation functions align, missing the fragility inherent 
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in the bubble’s structure. This study seeks to remedy this blindness by equipping the forecasting 
model with “vision” – specifically, the ability to see the topological shape of the time series through 
graph theory (Newman, 2010). 

The intellectual foundation of this research lies in the convergence of economics with statistical 
physics – a domain often termed “Econophysics”. This interdisciplinary approach treats financial 
markets not as equilibrium systems governed by rational agents, but as complex adaptive systems 
characterized by disorder, fluctuations, and emergent phenomena (Mantegna & Stanley, 2000). 

The scientific legitimacy of modeling such complex systems has received significant validation 
from the highest levels of the physics community. The 2021 Nobel Prize in Physics was awarded to 
Syukuro Manabe, Klaus Hasselmann, and Giorgio Parisi (Nobel Prize Outreach, 2021). Parisi’s 
work, in particular, on “the discovery of the interplay of disorder and fluctuations in physical systems 
from atomic to planetary scales”, provides a theoretical analog for financial markets. Just as spin 
glasses in physics exhibit frustration and multiple equilibria, financial markets exhibit competing 
narratives and sudden phase transitions (crashes). This perspective is also supported by empirical 
work framing stock market crashes as phase transitions, reinforcing the use of tools borrowed from 
statistical physics for analyzing market instabilities (Bielinskyi et al., 2023b). Furthermore, the 2024 
Nobel Prize in Physics, awarded to John J. Hopfield and Geoffrey E. Hinton for foundational 
discoveries in artificial neural networks, underscores the utility of network-based approaches in 
decoding complex patterns (Nobel Prize Outreach, 2024). 

In this context, the financial time series is no longer seen as a mere sequence of numbers but as 
the output of a high-dimensional dynamic system. The challenge is to reconstruct the “phase space” 
of this system to understand its trajectory (Takens, 1981). While methods like embedding dimensions 
and Lyapunov exponents have been used for decades, they are often sensitive to noise and require 
massive datasets (Eckmann et al., 1986). Recent work has also shown that energy-related markets 
can exhibit identifiable states of irreversibility, reinforcing the view that regime changes reflect 
deeper structural transitions rather than simple linear deviations (Bielinskyi et al., 2024). Network 
science offers a more robust alternative: mapping the time series into a graph (Newman, 2010). 

The core innovation utilized in this study is the NVG algorithm. Introduced by Lacasa et al., 
this method transforms a time series into a complex network based on a geometric criterion: two data 
points are connected if they have a direct “line of sight” to each other on a plot. 

This transformation is not merely an aesthetic exercise; it is a rigorous mathematical mapping 
that preserves the information content of the signal while exposing its structural properties (Lacasa 
et al., 2008). 

• Periodic series map to regular, lattice-like graphs. 
• Random series (white noise) map to random graphs with exponential degree 

distributions. 
• Fractal series (like financial markets) map to scale-free networks with power-law 

degree distributions. 
By converting the WTI price series into a sequence of evolving graphs, we can utilize the vast 

arsenal of network topology metrics – clustering coefficients, harmonic centrality, global efficiency, 
and spectral measures  – to quantify the state of the market (Chung, 1997; Latora & Marchiori, 2001; 
Rochat, 2009; Watts & Strogatz, 1998). These metrics act as “sensors” for the market's internal 
structure. For example, a sudden drop in the “Global Efficiency” of the visibility graph might indicate 
that the market is losing its long-term memory or coherence, often a precursor to a regime shift 
(Latora & Marchiori, 2001). 

The primary objective of this research is to construct and validate a hybrid ARIMAX-NVG 
forecasting model. Unlike a standard ARIMA model that relies solely on endogenous lags, the 
ARIMAX framework allows for the inclusion of external covariates (Box et al., 2015; Hyndman & 
Athanasopoulos, 2021). Here, the exogenous variables are not traditional macroeconomic indicators 
(like GDP or interest rates), but the complex network measures derived from the price series itself. 

This report is structured to provide an exhaustive analysis of this methodology: 
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• Section 2 (Materials and Methods) details the extensive WTI dataset (1990-2025), the 
mathematical formulation of the NVG algorithm, the specific definitions of the spectral 
and centrality measures used, and the specification of the ARIMAX model. 

• Section 3 (Results) presents the empirical findings, including the statistical significance 
of specific topological features (such as Harmonic Centrality and Efficiency) and the 
sign and magnitude of their regression coefficients. 

• Section 4 (Conclusions) synthesizes the implications of these findings, discussing how 
“structural” information translates into “predictive” gain and offering recommendations 
for future applications in energy risk management. 

By integrating the transparency of econometrics with the structural nuance of network science, 
this report aims to provide a sophisticated tool for navigating the turbulent waters of the global energy 
market. 
 
Materials and Methods 
 

The empirical basis of this study is the daily spot price of WTI crude oil, widely regarded as 
the benchmark for global energy pricing. The data is sourced from Federal Reserve Economic Data 
(FRED). The dataset spans a comprehensive 35-year period from May 23, 1990 to October 30, 2025. 
This interval is deliberately chosen to encompass a wide variety of market regimes: 

• The Great Moderation (1990s): A period of relative stability punctuated by the Asian 
Financial Crisis (Bernanke, 2004). 

• Asian Financial Crisis (late 1990s): a major global financial disturbance affecting 
commodity demand expectations. 

• The Global Financial Crisis (2008-2009): The collapse of Lehman Brothers and the 
subsequent demand shock. 

• Shale Revolution (2010-2014): structural supply-side change driven by U.S. tight oil 
growth. 

• The COVID-19 Pandemic (2020): The unprecedented demand destruction and negative 
pricing anomaly. 

• The Geopolitical Era (2022-now): The impacts of the Russia-Ukraine conflict and 
subsequent supply chain realignments. 

To ensure rigorous out-of-sample validation, the data is split into a Training Set (spanning from 
1992 to roughly 2020) and a Testing Set (spanning from 2020 to 2025). The inclusion of the post-
2020 period in the testing set is critical, as it challenges the model to perform during one of the most 
volatile periods in history. 

Target Variable Formulation: The raw price series 𝑃! is non-stationary and unsuitable for 
direct modeling. Consequently, we focus on forecasting 7-day forward returns, a relevant horizon for 
short-to-medium term risk management. The simple ℎ-step forward return 𝑅!,# for ℎ = 7 days is 
calculated as: 
 

𝑅",$ =
%!"#&%!

%!
  (1) 

 
However, financial returns exhibit volatility clustering (heteroscedasticity). To stabilize the 

variance and facilitate the comparison of returns across different volatility regimes, we employ a 
standardization procedure using a sliding window. For a window size 𝑤 = 50 days, the standardized 
return 𝑟!,# is defined as: 

𝑟",$ =
'!,#&(!,%
)!,%

, (2) 
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where 𝜇!,$ and 𝜎!,$ are the rolling mean and standard deviation of the returns over the past 50 
days. This transformed variable 𝑟!,# serves as the endogenous target variable 𝑦! in the ARIMAX 
framework. 

The cornerstone of the feature extraction process is the mapping of the univariate time series 
into a graph space. We employ the NVG algorithm (Lacasa et al., 2008) due to its convexity 
properties and its ability to capture both local and global dependencies. 

The mathematical definition is the following: Let the time series be represented as a set of 𝑁 
data points {(𝑡%, 𝑦%), (𝑡&, 𝑦&), … , (𝑡' , 𝑦')}, where 𝑡( represents the time index and 𝑦( represents the 
price value. 

Two arbitrary data values (𝑡) , 𝑦)) and (𝑡* , 𝑦*) are connected by an undirected edge in the 
associated graph if and only if any other data point (𝑡+ , 𝑦+) placed between them (𝑡) < 𝑡+ < 𝑡*) 
satisfies the visibility criterion: 
 

𝑦! < 𝑦" + (𝑦# − 𝑦")
$!%$"
$!%$#

.  (3) 
 

This inequality implies that two time points are connected if a straight line joining their tops 
does not intersect any intermediate data bars. The criterion is essentially a convexity check. A 
“valley” in the time series allows distant peaks to see each other, creating long-range edges. A “peak” 
in the time series (a local maximum) acts as a hub, as it can see many other points (both past and 
future). Thus, the degree of a node 𝑘( is directly correlated with the local magnitude and convexity 
of the price series. 

Financial markets are non-stationary systems where structural properties evolve over time. 
Constructing a single graph for the entire 35-year history would obscure these temporal dynamics. 
Therefore, we implement a sliding window approach: 

1. We utilize four distinct window lengths: 𝐿 ∈ {25,50,75,100} days. 
2. At each time step 𝑡, a subgraph is constructed using the price data in the interval 

[𝑡 − 𝐿 + 1, 𝑡]. 
3. For each window, the topology of the resulting graph is analyzed, and a vector of 

network metrics is computed. This results in a dynamic, time-varying stream of network 
indicators. 

For each sliding window, we calculate a suite of complex network measures. These measures 
are selected to capture specific structural aspects of the market: connectivity, efficiency, centrality, 
and clustering. These serve as the 𝑋 variables in the ARIMAX model. 

Spectral measures. Spectral graph theory utilizes the eigenvalues of graph matrices to 
understand global properties like synchronization and robustness (Chung, 1997).  

1. Algebraic connectivity (𝝀𝟐): Defined as the second-smallest eigenvalue of the graph 
Laplacian matrix (Fiedler, 1973). A value of 𝜆& > 0 indicates a connected graph. The 
magnitude of 𝜆& measures how difficult it is to decouple the graph. In a market context, 
high algebraic connectivity suggests a highly synchronized market where prices move 
in a unified manner, often observed during strong trends or systemic crashes. 

2. Spectral radius (𝑹): The largest eigenvalue of the adjacency matrix. It is strictly related 
to the dynamic range of the process (van Mieghem, 2011). 

3. Spectral gap (𝚫𝝀): The difference between the largest and second-largest eigenvalues. 
It controls the speed of convergence to equilibrium in dynamic processes (like random 
walks) on the graph. A large gap implies the market absorbs information rapidly 
(Chung, 1997). 

4. Natural connectivity (𝑵𝒄): defined as lnH𝑁.% ∑𝑒/!K. It measures the “robustness” of 
the network, quantifying the redundancy of routes between nodes (Wu et al., 2010). 

5. Graph energy 𝑬(𝑮): The sum of absolute values of eigenvalues. A holistic measure of 
structural complexity (Gutman, 1978). 
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Centrality and Efficiency Measures. These metrics identify the “importance” of specific days 
and the efficiency of information transmission. 

1. Global efficiency (𝑬𝒈𝒍𝒐𝒃):  

𝐸&'(" =
)

*(*%))
∑ )

-$%./0 , (4) 

where 𝑑(4 is the shortest path length between nodes 𝑖 and 𝑗 (Latora & Marchiori, 2001). High 
global efficiency in an NVG implies that most time points are visible to each other (short path 
lengths). This occurs in “flat” or “concave” market structures where historical prices are relevant to 
the present. A drop in efficiency often signals a regime shift where the past becomes disconnected 
from the present. 

2. Global harmonic centrality (𝑮𝑯𝒄):  

𝐺𝐻! =
)

*%)
∑ )

-$%0/. . (5) 

Unlike standard Closeness Centrality, Harmonic Centrality handles infinite distances 
(disconnected components) by taking the reciprocal of the distance (where 1 ∞⁄ = 0) (Rochat, 2009). 
While NVGs of continuous series are usually connected, this measure is more robust to “long tail” 
structures. High Harmonic Centrality suggests that a specific time window is dominated by a few 
central “hubs” (extreme price events) that connect the entire window. 

3. Betweenness Centrality (𝑩): Measures the fraction of shortest paths passing through 
a node. High betweenness nodes act as “bridges” between different market regimes 
(Freeman, 1977). 

4. Maximum Degree (𝑫𝒎𝒂𝒙): The highest number of connections for a single node in the 
window. Identifies the most significant local extremum (peak or valley) in that 
timeframe (Lacasa et al., 2008). 

Clustering and Density Measures.  

1. Clustering Coefficients (𝑪𝟑, 𝑪𝟒): 𝐶: measures the prevalence of triangles (transitivity), 
while 𝐶; measures squares. High clustering is associated with regular, deterministic 
signals. A decrease in clustering often indicates an increase in randomness or noise 
(Watts & Strogatz, 1998). 

2. Assortativity (𝒓): The Pearson correlation coefficient of degrees between connected 
nodes (Newman, 2002). 

a. Assortative (𝑟 > 0): Hubs connect to hubs. 
b. Disassortative (𝑟 < 0): Hubs connect to low-degree nodes. Financial networks 

frequently show disassortative mixing, where extreme events (hubs) are 
surrounded by smaller fluctuations. 

The ARIMAX Model Specification. The predictive engine is an ARIMAX model, which 
extends the univariate ARIMA by linearly adding exogenous covariates. The model for the 
standardized return 𝑦! is given by: 
 

𝑦! = 𝑐 + ∑ 𝜙(𝑦!.(
<
(=% + ∑ 𝜃4𝜖!.4

>
4=% + ∑ 𝛽?𝑋?.! + 𝜖!A

?=% , (6) 
 

where 𝜙( captures the momentum or memory of the returns themselves, 𝜃4 captures the 
persistence of past shock (error) terms, 𝑋?,! represents the complex network indicators, and 𝛽? 
quantifies the predictive impact of the network topology on future returns.  
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Results 
 

We analyze the topological evolution of the market network, identify the statistically significant 
network predictors, and evaluate the model's forecasting performance during the critical testing 
period of 2020-2025. 

The transformation of the WTI time series into visibility graphs reveals distinct topological 
signatures corresponding to different market phases. 

During the 2003-2008 supercycle, the visibility graphs exhibited high global efficiency and 
regular clustering. The steady rise in prices meant that each new high was “visible” to many previous 
highs, creating a dense, interconnected structure. During the 2008 crisis and the 2020 COVID-19 
crash, the network topology underwent a phase transition. We observed a sharp spike in maximum 
degree (as the crash created a prominent “valley” visible from many points) and a divergence 
in assortativity. The algebraic connectivity often rises prior to these events, signaling a fragmentation 
of the market structure before the actual price collapse. 

These observations validate the hypothesis that the shape of the price history changes 
fundamentally during different regimes, providing a signal that is distinct from simple price volatility. 

The regression analysis of the ARIMAX model identified a specific subset of network measures 
that possess high predictive power for 7-day forward returns. 

Table 1 presents the top 10 statistically significant features (𝑝 < 0.05) derived from the training 
process.  

Table 1. Statistically significant network features in the ARIMAX model. 

Feature Name Window Size (Days) Lag Coefficient 
(𝜷) 

Global Harmonic 
Centrality 

25 𝑡 -1.825×1011 

Global Efficiency 25 𝑡 +1.825×1011 
Global Harmonic 

Centrality 
50 𝑡 +1.247×1011 

Global Efficiency 50 𝑡 -1.247×1011 
Global Harmonic 

Centrality 
75 𝑡 -7.224×1010 

Global Efficiency 75 𝑡 +7.224×1010 
Global Harmonic 

Centrality 
100 𝑡 +4.726×1010 

Global Efficiency 100 𝑡 -4.726×1010 
Global Harmonic 

Centrality 
25 𝑡-1 +1.563×1011 

Global Harmonic 
Centrality 

25 𝑡-2 -4.442×1011 

A striking pattern emerges in the 25-day window (short term). Global efficiency has a large 
positive coefficient, while global harmonic centrality has a large negative coefficient.  

High global efficiency implies a network where information flows easily and path lengths are 
short. In the context of NVG, this often corresponds to a coherent trend where past prices support the 
current level. The positive coefficient suggests that such a structure predicts positive future returns – 
momentum is sustained. 

High harmonic centrality implies the presence of dominant hubs (extreme values) that make the 
graph highly centralized. A negative coefficient suggests that when the local window becomes too 
centralized (e.g., dependent on a single price spike), the market is fragile and likely to correct 
downwards. 
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The significance of lagged variables (centrality at 𝑡-1 and 𝑡-2) indicates that the topological 
information is not just instantaneous but has a lingering effect. The extremely large negative 
coefficient for global harmonic centrality at window 25 and time lag 𝑡-2 (-4.442×1011) suggests a 
strong mean-reversion effect: if the market structure was highly centralized two days ago, a sharp 
negative correction is highly probable today. 

The model was rigorously tested on the out-of-sample period (2020-2025), covering the post-
pandemic recovery and the geopolitical instability of the Russia-Ukraine war. The performance 
metrics are summarized in Table 2. 

Table 2. Test Set Error Metrics (Standardized Returns). 

Feature Name Window Size (Days) 
Root Mean Square Error 1.71 

Mean Absolute Error 1.35 
Mean Squared Error 2.92 

 
Conclusions 
 

This research report has detailed the development, implementation, and evaluation of a hybrid 
forecasting system for crude oil prices, merging the distinct disciplines of econometrics and complex 
network science. By treating the time series of WTI crude oil as a complex evolving network, we 
have demonstrated that the topological structure of the market contains valuable predictive 
information that eludes traditional linear analysis.  

Changes in the geometric structure of the visibility graph – measured through efficiency, 
centrality, and spectral properties – often precede significant price movements. The visibility graph 
acts as a “structural X-ray” of the market, revealing fragility (e.g., high centralization) that is not 
apparent in simple price plots. The ARIMAX-NVG model leverages the best of both worlds: the 
statistical rigor and mean-reversion properties of ARIMA, and the non-linear, structural sensitivity 
of network science. The alternating signs of coefficients across window sizes (25 vs. 50 days) confirm 
that energy markets are not monolithic. They operate on multiple timescales simultaneously, with 
short-term speculative flows often opposing medium-term fundamental trends. The model effectively 
disentangles these conflicting signals. 

The success of this methodology challenges the Strong Form of the Efficient Market Hypothesis 
(EMH). If historical price structures can predict future returns, then the market is not a random walk 
(Fama, 1970; Samuelson, 1965). Instead, it supports the Fractal Market Hypothesis (FMH), which 
posits that markets are made up of heterogeneous agents with different investment horizons, and that 
instability arises when the liquidity provided by one time-horizon fails (Peters, 1994). 

For energy traders and risk managers, this research offers a tangible edge. The complex network 
indicators – particularly global efficiency and harmonic centrality – can be integrated into algorithmic 
trading systems as “filters” or “alpha signals”. A sharp divergence in these metrics could serve as an 
early warning system for volatility spikes, prompting defensive hedging strategies. 
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